PHYS1189-1199

DATA SHEET

Mechanics

Motion with constant acceleration:		$v = v_0 + at$	
		$\Delta x = v_0 t + \frac{1}{2} a t^2$	
		$v^2 = v_0^2 + 2a \Delta x$	
Forces:	$F = Gmm^{\prime}/r^{2}$		
	$f_s(max) = \mu_s N$		
	$f_k = \mu_k N$		
Torque:	$\tau = rF \sin \theta$		
	$\tau = \mathbf{r} \times \mathbf{F}$		
Centre of gravity: $X = \frac{x_1w_1 + x_2w_2 +}{w_1 + w_2 +}$			
Circular motion: $a_r = v^2/r$			
	$v = r\omega$		
	$I = \sum mr^2 = \tau/\alpha$		
Gravitational potential energy: U = mgh			

Photons, Atomic Physics

Photon energy:	$\mathbf{E} = \mathbf{h}\mathbf{f}$
Hydrogen energy levels:	$E_n = -E_0/n^2$
de Broglie wavelength:	$\lambda = h/p$

Nuclear Physics, Ionizing Radiation

Radioactive decay: $N/N_0 = e^{-\lambda t} = (\frac{1}{2})^{t/T}$ Half life: $T = (ln2)/\lambda$ Binding energy $e^{2} \times (mass \ defect)$ Activity: $A = \lambda n \ N_A$

Electricity

Electric forces and fields: $F = kq_1q_2/r^2$ (point charges)

 $\begin{aligned} k &= \frac{1}{4\pi\epsilon_o} \\ F &= qE \\ \text{Electric potential:} & \Delta W &= q \, \Delta V \\ V &= kQ/r \text{ (point charge)} \end{aligned}$ Capacitance: C = Q/V C = $\frac{A}{4\pi kl} = \epsilon_o A/l \text{ (parallel plates)} \\ C &= K\epsilon_o A/l \\ U &= \frac{1}{2} QV \end{aligned}$

Fluid Mechanics, Viscosity

Conservation of energy:	$P + \rho gy + \frac{1}{2}\rho v^2 = constant$	Cap
Conservation of mass: Viscosity:	$Q = \rho A \overline{v} = constant$ $F/A = n(\Delta v / \Delta v)$	
Laminar flow in a pipe:	$Q = \frac{\pi}{8\eta} \left(\frac{\Delta P}{l}\right) r^4 = \frac{\Delta P}{R_f}$	

Alternating Electric Currents

Alternating current:	$i(t) = I_m \sin(\omega t + \alpha)$
rms value:	$I_{rms} = I_m / \sqrt{2}$
Resistance:	$v_{\mathbf{R}} = \mathbf{R} \mathbf{i}$
Inductance:	$v_L = L di/dt$
Capacitance:	$v_{C} = (1/C)q$
Reactance (series):	$X = X_L - X_C = \omega L - \frac{1}{\omega C}$
Impedance:	Z = (p.d. across)/(current)
Series impedance:	$Z = (R^2 + X^2)^{1/2}$
Average power:	$P = \frac{1}{2}I_m^2 R = I_{rms}^2 R$
	$= E_{rms}I_{rms}\cos\Phi$
Series resonance:	$\omega_{\rm o} = (\rm LC)^{-1/2}$
Ideal transformer:	$V_2/V_1 = I_1/I_2 = N_2/N_1$
	$Z_{eq} = (N_1/N_2)^2 R$

Vectors

 $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ $\mathbf{A} \times \mathbf{B} = (AB \sin \theta)\mathbf{\hat{c}}$ $\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$

$$\begin{split} R &= \rho_a \; l/\pi r^2 \; (axoplasm \; resistance) \\ C &= C_m(2\pi rl) \; (membrane \; capacitance) \\ G &= G_m \; 2\pi rl \; (leakage \; conductance) \\ \lambda &= (R_m r/2\rho_a)^{1/2} \; (space \; parameter) \\ \; \ln \frac{c_1}{c_2} \; = - \frac{E_2 \cdot E_1}{k_B T} \; = - \frac{q(V_2 \cdot V_1)}{k_B T} \\ (Boltzmann \; dist. \; and \; Nernst \; eqn.) \\ \Delta V_x &= \Delta V_o \; e^{-x/\lambda} \; (weak \; stimulus) \\ v &\cong r/\rho_a \; C_m x \qquad (action \; potential) \end{split}$$

Magnetic forces and fields:

$$\begin{split} \mathbf{F} &= q\mathbf{v} \times \mathbf{B} \qquad (moving charge) \\ \mathbf{F} &= \mathbf{I} \mathbf{I} \times \mathbf{B} \qquad (electric current) \\ \mathbf{B} &= 2\pi k' \mathbf{I} / a = \mu_0 \mathbf{I} / 2a \qquad (centre of circular loop) \\ \mathbf{B} &= 4\pi k' \mathbf{In} = \mu_0 \mathbf{In} \qquad (long solenoid) \\ \mathbf{B} &= 2k' \mathbf{I} / r = \mu_0 \mathbf{I} / 2\pi r \qquad (long straight wire) \\ \mathbf{F} / \Delta \mathbf{I} &= 2k' \mathbf{II} ' / d = \mu_0 \mathbf{II} ' / 2\pi d \qquad (parallel conductors) \end{split}$$

Induced currents and fields:

$$\begin{split} \phi &= \mathbf{B}\mathbf{A}\,\cos\,\theta\\ \varepsilon &= -\,\Delta\phi/\Delta t\\ \varepsilon &= -\mathbf{L}\,\,di/dt\,\,(inductance)\\ \mathbf{U} &= \,\frac{1}{2}\,\,\mathbf{L}i^2 \end{split}$$

Electric current:	I = enAv
	$\mathbf{R} = \mathbf{V} / \mathbf{I}$
	$\rho = RA/l = 1/\sigma$
	$\mathbf{P} = \mathbf{IV}$
RC circuit transients:	$i = i_0 e^{-t/T}$
	$q = q_0(1 - e^{-t/T})$
	T = RC
LR circuit transients:	$i = i_0 e^{-t/T} L$
	$i = i_0(1 - e^{-t/T}L)$
	$T_L = L/R$

Numerical Value of Constants

	Speed of light (in vac.)	c	$= 3.00 \times 10^8 \text{ ms}^{-1}$
	Atomic mass unit	u	$= 1.66 \times 10^{-27} \text{ kg}$
	Electron mass	me	$= 9.11 \times 10^{-31} \text{ kg}$
	Proton mass	mp	$= 1.673 \times 10^{-27} \text{ kg}$
	Neutron mass	mn	$= 1.675 \times 10^{-27} \text{ kg}$
	Planck's constant	h	$= 6.63 \times 10^{-34} \text{ Js}$
			$= 4.14 \times 10^{-15} \text{ eVs}$
	Acceleration of gravity	g	$= 9.80 \text{ ms}^{-2}$
	Gravitational constant	G	$= 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$
	Boltzmann constant	kB	$= 1.38 \times 10^{-23} \text{ JK}^{-1}$
	Electron charge	-e	$= 1.60 \times 10^{-19} \text{ C}$
	Coulomb constant, k =	$\frac{1}{4\pi\epsilon}$	$rac{1}{c_0} = 9.00 \times 10^9 \text{ Nm}^2 \text{ C}^{-2}$
	Permittivity constant,	εο	$= 8.85 \times 10^{-12} \text{ Fm}^{-1}$
Biot-Savart constant, k'		$= 10^{-7} \text{ TmA}^{-1}$	
	Permeability constant,	μ _o	$= 1.26 \times 10^{-6} \text{ Hm}^{-1}$