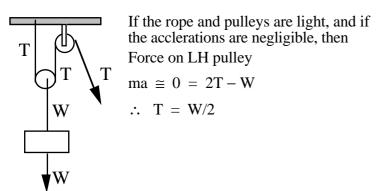


$$W = \int_{0}^{L} F \cos \theta \, ds$$

if F is constant, we get $W = FL\cos \theta$ SI Unit: 1 Newton x 1 metre = 1 Joule



If mass rises by D, word done = WD. But rope shortens on both sides of rising pulley, if mass rises by D, rope must be pulled 2D, so work done = $T \times 2D = WD$

Example. $F_{grav} \propto 1/r^2$. How much work is done to move m = 1 tonne from earth's surface (r = 6500 km) to r = ∞ ?

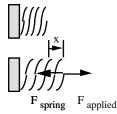
W = ∫ F ds cos θ
= ∫ F dr
F = - F_{grav} =
$$\frac{Cm}{r^2}$$

On surface F/m = 9.8 ms⁻²
∴ C = (9.8 ms⁻²)(6.5 10⁶ m)² = 4.1 10¹⁴ m³s⁻²

W =
$$\int_{6500} \frac{C m}{km} r^2 dr$$

= $-Cm \left(\frac{1}{\infty} - \frac{1}{6.5 \ 10^6} \right)$
= $6.3 \ 10^{10} \ J = 63 \ GJ.$

No applied force (x = 0)



Work done **by** spring = $\int F_{spring} dx$

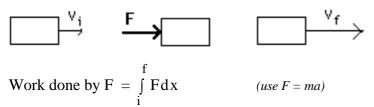
$$= \int -kx.dx = -\frac{1}{2}kx^2$$

Work done **on** spring $= \int F_{applied} dx$

$$= \int kx.dx = + \frac{1}{2}kx^2$$

Work and kinetic energy

(Total) force F acts on mass m in x direction.



$$= \int_{i}^{f} m \frac{dv}{dt} dx = \int_{i}^{f} m \frac{dx}{dt} dv$$
$$= \int_{i}^{f} mv.dv$$

Work done by F = $\frac{1}{2}$ mv_f² - $\frac{1}{2}$ mv_i²

Define **kinetic energy** $K \equiv \frac{1}{2}mv^2$

Increase in kinetic energy of body = work done by **total** force acting on it.

Power. Rate of doing work

Average power $\overline{P} \equiv \frac{W}{\Delta t}$ Instantaneous power $P = \frac{dW}{dt}$

SI unit: 1 Joule per second \equiv 1 Watt (1 W)

(humans can produce 100s of W, car engines several tens of kW)

Potential energy.

e.g. Compress **spring**, do W on it, but get no K. Yet can get energy out: spring can expand and give K to a mass. \rightarrow Idea of stored energy.

e.g. **Gravity**: lift object (slowly), do work but get no K. Yet object can fall back down and get K.

But: Slide mass slowly along a surface. Do work against **friction**, but can't recover this energy mechanically. Not all forces "store" energy

Conservative and non-conservative forces

$$\begin{split} W_{against grav} &= -\int_{i}^{t} F_{g} dr \cos \theta \\ &= -\int_{i}^{f} F_{g} dz \\ &= mg \int_{i}^{f} dz \\ &= mg (z_{f} - z_{i}) \qquad \text{in uniform field} \end{split}$$

W is uniquely defined at all $\underline{\mathbf{r}}$, i.e. W = W($\underline{\mathbf{r}}$) If $z_f - z_i$ are the same, W = 0.

:. Work done against gravity round a closed path = 0 Gravity is a **conservative force**

$$W_{\text{against spring}} = -\int_{i}^{1} F_{\text{spring.}} dx$$
$$= -\int_{i}^{f} -kx dx = -\frac{1}{2}k(x_{f}^{2} - x_{i}^{2})$$

W is uniquely defined at all x, i.e. W = W(x)

 $x_f = x_i \implies W = 0.$

:. Work done round a closed path = 0 Spring force is a **conservative force**

Friction

 $dW_{against fric} = -F_f ds \cos \theta$ but F_f always has a component *opposite* ds

 \therefore dW always ≥ 0 . (we never get work back)

- :. cannot be zero round closed path, :: $W \neq W(\underline{\mathbf{r}})$
- : friction is a non-conservative force

Potential energy

For a **conservative** force \underline{F} (i.e. one where work done against it, $W = W(\underline{r})$) we can define potential energy U by

$$\Delta U = W_{against.} \quad i.e.$$
$$\Delta U = -\int_{i}^{f} F dr \cos \theta$$

Same examples: spring

$$\Delta U_{\text{spring}} = -\int_{i}^{I} F_{\text{spring}} dx = \frac{1}{2} k(x_f^2 - x_i^2)$$

Choice of zero for U is arbitrary.

Here U = 0 at x = 0 is obvious, so $U_{\text{spring}} = \frac{1}{2} \text{kx}^2$

From energy to force:

 $U = -\int F \, ds$ where ds is in the direction // F

$$F = -\frac{dU}{ds}$$

in fact $F_x = -\frac{dU}{dx}$, $F_y = -\frac{dU}{dy}$, $F_z = -\frac{dU}{dz}$

Spring: $U_{spring} = \frac{1}{2}kx^2$ \therefore $F_{spring} = -kx$

Gravity: $U_g = mgz$ \therefore $F_g = -\frac{dU}{dz} = -mg$ Energy of interaction:

Conservation of mechanical energy

Recall: Increase in K of body = work done by **total** force acting on it. (*restatement of Newton 2*) But, if all forces are conservative, work done by these forces $= -\Delta U$ (*definition of U*)

 \therefore if only conservative forces act, $\Delta K = -\Delta U$

We define mechanical energy

 $E \equiv K + U$

so, if only conservative forces act, $\Delta E = 0$.

we can make this stronger.

Work done by **non-conservative forces** Define internal energy U_{int} where

 $\Delta U_{int} = -$ Work done by n-c forces

(= + Work done **against** n-c forces)

Recall defⁿ of K: ΔK = work done by Σ force

$$\therefore \qquad \Delta K = -\Delta U - \Delta U_{int}$$

 $\therefore \qquad \Delta K + \Delta U + \Delta U_{int} = 0$

If n-c forces do no work, then $\Delta U_{int} = 0$, so:

If non-conservative forces do no work,

$$\Delta E = \Delta K + \Delta U = 0$$

or: mechanical energy is conserved

Never, ever write: "kinetic energy = potential energy" **Example.** Freda (m = 60 kg) rides pogo stick (m << 60 kg) with spring constant k = 100 kN.m⁻¹. Neglecting friction, how far does spring compress if jumps are 50 cm high?

Non-conservative forces do no work, \therefore mechanical energy is conserved, i.e.

$$E_{bottom} = E_{top}$$

$$K_b + U_b = K_t + U_t$$

$$(U = U_{grav} + U_{spring})$$

$$\frac{1}{2} mv_{horiz}^2 + (mgy_b + \frac{1}{2} kx_b^2) \cong \frac{1}{2} mv_{horiz}^2 + (mgy_t + \frac{1}{2} kx_t^2)$$

$$mg(y_t - y_b) \cong \frac{1}{2} kx_b^2$$

$$\therefore x_b \cong \sqrt{\frac{2mg(y_t - y_b)}{k}} \cong 80 \text{ mm.}$$