PHYS 1189-1199

Lecturers Joe Wolfe Kristina Wilk Texts:

- Physics, Kane & Sternheim, (Wiley). Thorough text, very well written and illustrated, and could serve as a reference book for years to come.
- The Physics Companion A.C. Fischer-Cripps. (Fischer-Cripps Laboratories). Small, cheap, good text covering most of the syllabus. Available at the CoOp bookstore.
 on-line: <u>www.fclabs.com.au/companions</u> good web text, covers much of the syllabus. Not free: A\$10 for access for one year.

Your web page

www.phys.unsw.edu.au/~jw/1189.html

Tutorials

Tut sheets have study notes and questions

Physics: "The science treating of the properties of matter and energy, or of the action of the different forms of energy on matter in general (excluding chemistry and biology)" (OED)

Vectors	have magnitude and direction	
scalars	only have magnitude	
Examples The Earth's gravit $\underline{g} = 9$ The volume of mi 600 The spin of the Ea one turn per 23.9 = 7.30 10 ⁻⁵ rad	tational field in this room? 9.8 N.kg ⁻¹ down ilk in a carton? ml (= 6 10 ⁻⁴ m ³) arth? hours (axis is) North vector d.s ⁻¹ North	vector scalar
Scalars: mas Vectors: For 2 m towards door - 9.8 ms ⁻² up, Vectors written be	ss, length, heat, temperature ce, acceleration, electric field ;; 3.7 ms ⁻¹ at 31° E. of N., 4 N in +ve x direction old, or underscored: <u>a</u>	
displacement <u>r</u> how far did you <i>and in what direc</i> 20 cm up	distance r move how far ction? did you go?	
velocity <u>v</u> how fast are you <i>and in what dire</i> 5 km.hr ⁻¹ East	speed v n going how fast are ction? you going now?	

v is the magnitude of \underline{v}

Vector addition

Example

 v_c

 $\mathbf{v} = \mathbf{v}_{boat} + \mathbf{v}_{current}$

A boat heads East at 8 km.hr⁻¹. The current flows South at 6 km.hr⁻¹. What is the boat's velocity relative to the Earth?

To add the vectors, draw them head-to-tail.

magnitude:
$$v = \sqrt{v_b^2 + v_c^2}$$

 $= \sqrt{(8 \text{ km.hr}^{-1})^2 + (6 \text{ km.hr}^{-1})^2}$
 $= \sqrt{(8^2 + 6^2) (\text{km.hr}^{-1})^2}$
 $= \sqrt{(64 + 36)} \sqrt{(\text{km.hr}^{-1})^2}$
 $= 10 \text{ km.hr}^{-1}$
direction: $\theta = \tan^{-1} \frac{6 \text{ km.hr}^{-1}}{8 \text{ km.hr}^{-1}} = \tan^{-1} 0.75$
 $= 37^\circ$

Answer: 10 km.hr^{-1} at 37° South of East

Braw the vectors head to head to subtract them.

Example A sailor wants to travel East at 8 km.hr⁻¹. The current flows South at 6 km.hr⁻¹. What direction must she head, and what speed should she make relative to the water?

 $\underline{\mathbf{a}} - \underline{\mathbf{b}} = \underline{\mathbf{c}}$ i.e. $\underline{\mathbf{a}} = \underline{\mathbf{c}} + \underline{\mathbf{b}}$

In other words, you can rearrange vector subtraction so that it becomes vector addition

 $\mathbf{v} = \mathbf{v}_{boat} + \mathbf{v}_{current}$

 $\mathbf{v}_{\text{boat}} = \mathbf{v} - \mathbf{v}_{\text{current}}$

To subtract the vectors, draw them head-to-head.

She must head 37° North of East and travel at 10 km.hr⁻¹ with respect to the water.

Components and unit vectors

 a_x is the **component** of a in the x direction - *scalar* $a_x = a \cos \theta$, $a_y = a \sin \theta$

 $\underline{\mathbf{a}} = \mathbf{a}_{\mathbf{X}} \ \underline{\mathbf{x}} + \mathbf{a}_{\mathbf{y}} \ \underline{\mathbf{y}}$

Pythagoras: $a = \sqrt{a_x^2 + a_y^2}$

Angle

 $e \qquad \qquad \theta = \tan^{-1} \frac{a_{y}}{a_{x}}$

Addition by components

Important:

 $\begin{array}{rcl} 1 \mbox{ vector eqn in } & \to & n \mbox{ independent } \\ n \mbox{ dimensions } & \to & algebraic eqns. \\ \mbox{important case: } & 0 = 0 \ \underline{x} + 0 \ \underline{y} \\ & \ddots & \mbox{ if } \underline{a} + \underline{b} = 0, & \left(\begin{array}{c} e.g. \mbox{ mechanical } \\ equilibrium \end{array} \right) \\ a_x + b_x = 0 \ \ and \ \ a_y + b_y = 0 \end{array}$

Example

 $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$ are defined in the diagram at right. Calculate $2\underline{\mathbf{b}} - \underline{\mathbf{a}}$

looks messy

Alternatively:

 $\underline{\mathbf{b}} = 9 \cos 30^{\circ} \underline{\mathbf{x}} + 9 \sin 45^{\circ} \underline{\mathbf{y}} \text{ m} \text{ and}$ $\underline{\mathbf{a}} = -5 \cos 45^{\circ} \underline{\mathbf{x}} + 5 \sin 45^{\circ} \underline{\mathbf{y}} \text{ m}$ $2\underline{\mathbf{b}} - \underline{\mathbf{a}} = (18 \cos 30^{\circ} + 5 \cos 45^{\circ}) \underline{\mathbf{x}}$ $+ (18 \sin 30^{\circ} - 5 \sin 45^{\circ}) \underline{\mathbf{y}} \text{ m}$ $= 19 \underline{\mathbf{x}} + 5.5 \underline{\mathbf{y}} \text{ m}$ $|2\underline{\mathbf{b}} - \underline{\mathbf{a}}| = 20 \text{ m}$ $\theta = \tan^{-1} \frac{5}{19} = 16^{\circ}$

Kinematics - study of motion Motion with constant acceleration in v dirⁿ

$$a_{y} = constant \equiv \frac{dv_{y}}{dt}$$

$$v_{y} = \int a_{y} dt$$

$$= a_{y}t + const$$

$$v_{y} = u_{y} + a_{y}t$$
(i)
$$y = \int v_{y} dt$$

$$= \int u_{y} + a_{y}t dt$$

$$= u_{y}t + \frac{1}{2}a_{y}t^{2} + constant$$

$$y = y_{0} + u_{y}t + \frac{1}{2}a_{y}t^{2}.$$
(ii)
Eliminate t from (i) and (ii)

y - y₀ = $u_y t + \frac{1}{2} a_y t^2$ = \Rightarrow $2a_y(y - y_0) = v_y^2 - u_y^2$ (iii) symbols are not always the same

Example. Ball 1 thrown vertically up at 5 ms⁻¹ from 20 m above ground. Simultaneously, ball 2 thrown vertically down at 5 ms⁻¹ from 20 m above ground. What are their speeds when they hit the ground, and the interval between collisions?

 $u_{y1} = 5 \text{ ms}^{-1}$ $u_{y2} = -5 \text{ ms}^{-1}$ $y_0 = 20 \text{ m}$ Displacement-time and velocity-time graphs are often useful

Example. Ball 1 thrown vertically up at 5 ms⁻¹ from 20 m above ground. Simultaneously, ball 2 thrown vertically down at 5 ms⁻¹ from 20 m above ground. What are their speeds when they hit the ground, and the interval between collisions?

 $u_{y1} = 5 \text{ ms}^{-1}$ $u_{y2} = -5 \text{ ms}^{-1}$ $y_0 = 20 \text{ m}$ When y = 0, t = ? v = ?

Strategy:

 $y = y_o + u_y t + \frac{1}{2} a_y t^2 \longrightarrow t_1 \text{ and } t_2.$ $v_y = u_y + a_y t \longrightarrow v_{y1} \text{ and } v_{y2}.$ $y \ = \ y_{0} \, + \, u_{y}t \, + \, \, \frac{1}{2} \, a_{y}t^{2}$ $0 = 20 + 5 t - 9.8 t^2$ (you know this) solve quadratic \rightarrow gives t substitute in $v_y = u_y + a_y t$

Example. Joe runs $(v_J = 6 \text{ ms}^{-1})$ towards a stationary bus. When he is 20 m from it, the bus accelerates away at 2 m.s⁻². Can he overtake it?

Eliminate x_{Jo} *by choice of origin,* $x_{bo} = 30$ *m Draw a diagram*

 $\sqrt{-ve}$ \therefore no solutions, \therefore no overtaking.

Projectiles Without air, $a_y = -g = constant$. $a_x = 0$

(Galileo: independence of horiz. & vert motion)

(*)

(ii)
$$\rightarrow$$
 y = y₀ + u_yt - $\frac{1}{2}$ gt².

(ii) \rightarrow x = x₀ + v_xt. Choose axes so that x₀ = y₀ = 0

Eliminate t using (ii)
$$t = \frac{x - x_0}{v_x} = \frac{x}{v_x}$$

 $\Rightarrow y = u_y \left(\frac{x}{v_x}\right) - \frac{1}{2}g\left(\frac{x}{v_x}\right)^2$

which is a parabola. *ie* the **path is a parabola**

_

We can now solve for the range R.

y = 0 when x = 0 or x = R

_

$$(*) \Rightarrow u_{y}\left(\frac{R}{v_{x}}\right) = \frac{1}{2}g\left(\frac{R}{v_{x}}\right)^{2}$$

$$v_{yo} = \frac{1}{2}g\left(\frac{R}{v_{x}}\right)$$

$$R = \frac{2v_{yo}v_{x}}{g}$$

$$v_{x} = u\cos\theta \quad v_{yo} = u\sin\theta$$

$$R = \frac{2u^{2}\sin\theta\cos\theta}{g}$$

$$= \frac{u^{2}\sin2\theta}{g}$$
max of sin function is 1, when $\theta = 45^{\circ}$

$$R_{max} = \frac{u^{2}}{g}$$
check units: $[u] = ms^{-1}, [g] = ms^{-2} \rightarrow \left(\frac{m}{s}\right)^{2} \left(\frac{s^{2}}{m}\right) = m$

 $\mathbf{\underline{r}'= \underline{r} - \underline{r}_{f}}$ $\mathbf{\underline{v}'} = \frac{d}{dt} \mathbf{\underline{r}'}$ $= \frac{d}{dt} \mathbf{\underline{r}} - \frac{d}{dt} \mathbf{\underline{r}}_{f}$ $= \underline{v} - \underline{v}_{f}$

similarly, $\underline{\mathbf{a}}' = \underline{\mathbf{a}} - \underline{\mathbf{a}}_{f}$

any problems with this argument?

Problem River flows East at 10 km/hr. Sailing boat travels East down the river.

Can the boat travel faster

- a) with no wind?
- with 10 km/hr wind from West? b) . P____ 8

Vw = 0 $\rightarrow v_r \longrightarrow v_w$ $\rightarrow v_r$

Consider motion *relative to the water*.

a			b	
۷ŕ	= 0	← v‰	$V'_r = 0$	$V'_{W} = 0$

b) $v'_{W} = 0$: boat cannot sail

∴ boat drifts East at 10km/hr.

a) 10 km/hr headwind.

Sailboat can tack

∴ travel East w.r.t water ∴ goes faster.