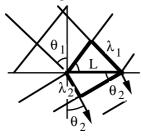

Physical optics (wave properties of light)

Refraction. Main application of diffraction is in lenses. Other examples are mirages, rainbows.



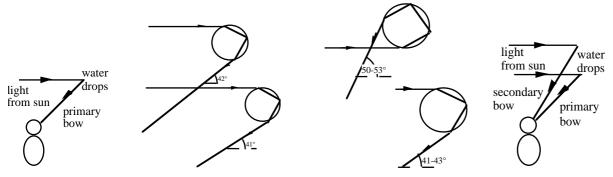
Refraction in the wave picture

Rays (\rightarrow) are at right angles to wavefronts. Look at what happens when a :ay bends at an interface

Let's look at this close-up:

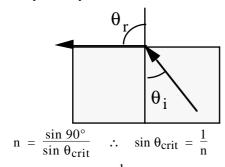
But

$$\begin{aligned} \lambda &= v/f, \, so \\ n_{21} &= \frac{v_1/f}{v_2/f} = \frac{v_1}{v_2} \end{aligned}$$

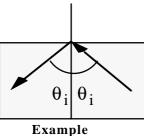

In particular, if (1) is vacuum, then

$$n_2 = \frac{c}{v_2}$$

For any material, $\frac{1}{n}$ is the factor of reduction in the speed in that medium.


 $n = n(\lambda)$. n decreases with λ so blue refracts more

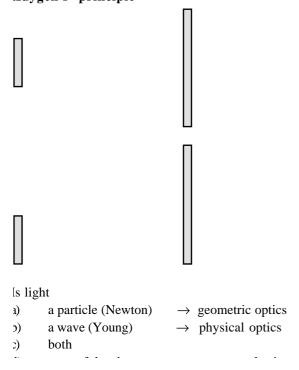
Example Rainbow


Fotal internal reflection

Going from high n to low n, $\theta_r > \theta_i$ critical value of θ_i when $\theta_r = 90^\circ$.

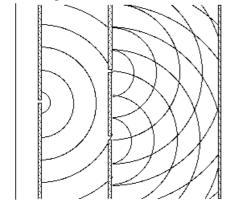
If $\theta_i > \theta_{crit}$ (ie if $\sin \theta_{crit} > \frac{1}{n}$)

Fotal internal reflection



what is the minimum n for glass to be used in a periscope? (assume 45° prisms)

- -


 $\begin{array}{ll} \theta_i \sim 45^\circ \\ \mbox{require} & \sin \theta_i \ > \sin \theta_{crit} \ = \ \frac{1}{n} \\ \hfill \therefore & n \ > \ \frac{1}{\sin 45^\circ} \ = \ 1.4 \end{array}$

Physical optics Geometrical optics only works if size >>λ. Why? Huygen's principle

Young's experiment

Light through one slit (gives *coherent source*) then **two slits** gives nterference pattern on screen.


Electromagnetic radiation

Speed $c = 3.0 \ 10^8 \ ms^{-1}$

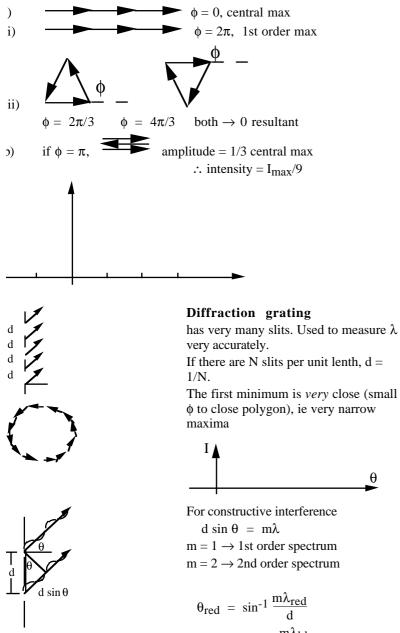
(This is definition of metre)

 λ : for visible light, 400 nm < λ < 800 nm

Typical f =
$$\frac{c}{\lambda} \sim \frac{3 \ 10^8 \ \text{ms}^{-1}}{5 \ 10^{-7} \ \text{m}}$$

= 6 10¹⁴ Hz = 600 THz

Constructive interference if $d \sin \theta = m \lambda$ Destructive interference if $d \sin \theta = \left(m + \frac{1}{2}\right)\lambda$


At an angle θ , the phase difference ϕ is

$$\frac{\Phi}{2\pi} = \frac{\Delta \text{ pathlength}}{\lambda} = \frac{d \sin \theta}{\lambda}$$

$$\therefore \quad \Phi = \frac{2\pi}{\lambda} d \sin \theta \qquad \begin{array}{l} how \text{ to add two sin waves?} \\ phasor \text{ diagrams} \\ a_{\text{total}} \\ \phi/2 \\ a \end{array}$$

$$\beta = \phi/2 = \frac{\pi}{\lambda} d \sin \theta$$

Example 3 narrow slits radiate uniformly and in phase. Interference pattern on screen. (a) Show phase diagrams for (i) central maximum (ii) lst order maximum (iii) minima between i and ii.
(b) Sketch I(\$\phi\$)

$$\theta_{\text{blue}} = \sin^{-1} \frac{m\lambda_{\text{blue}}}{d}$$
 etc

Coherence length

Wave trains have finite length - coherence length

Only interfere if Δ pathlength < lExamples Radio transmitter $E = E_m \sin (kx - \omega t)$

 E_m , ω , k vary slowly

Hot body (e.g. lamp) $l \sim 1$ m, but different regions have different, random phase. \therefore , to get interference, use a pin hole and keep Δ path << 1 m LASER (Light Amplification by Stimulated Emission of Radiation) l >> km

Interference in thin films

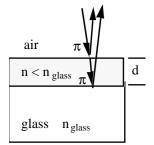
Light in a medium travels at c/n.

 $\lambda_{\text{medium}} = \lambda/n$

$$\Delta \phi = 2\pi \frac{\Delta \text{ path}}{\lambda_{\text{med}}} = 2\pi \frac{n \Delta \text{ path}}{\lambda}$$

Define **Optical path length** \equiv n . pathlength $\Delta \phi = 2\pi \frac{\Delta \text{ optical pathlength}}{\Delta \phi}$

$$\varphi = 2\pi \lambda$$


Reflections remember reflections in strings From less dense to more dense $\Delta \phi = \pi$ From more dense to less dense

 $\Delta \phi = 0$

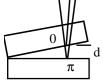
transmitted wave has no phase change

Example: Non reflective coating

useful in camera lens etc

Coating has $1 < n < n_{glass}$

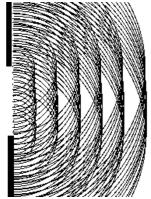
How thick should it be to give minimum reflection?

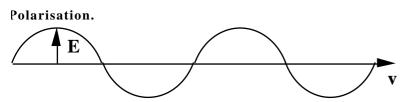

Both reflections have π phase change. As $d \rightarrow 0$, \rightarrow constructive nterference.

For destructive, we want

 Δ optical pathlength = $\lambda/2$ $2nd = \lambda/2$ $1 \sim \frac{\lambda}{4n} = \frac{550 \text{ nm}}{4 \text{ 1.2}} \sim 100 \text{ nm}$

Air wedge

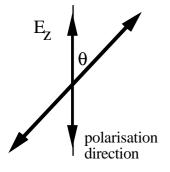

Denstructive interference if $2d = m \lambda$ Constructive interference if


 $2d = \left(m + \frac{1}{2}\right) \lambda$

At L.H. end, destructive (dark), then count fringes to get thickness. Also: Newton's rings, oil slicks

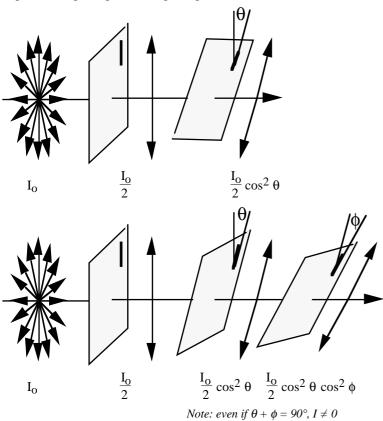
Diffraction from a slit (Later from a circle)

Use Huygen's construction: beam of finite width, interference if d ~ λ



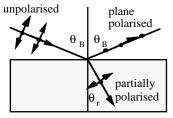
EM waves are **transverse** waves, \therefore can be polarised. Usually light has waves with **E** in all directions

Unpolarised Plane polarised


Polaroid materials allow E in only one dirn

 $E_{transmitted} = E \cos \theta$

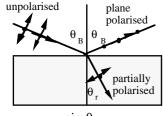
Malus' Law: $I_{trans} = I_{in} \cos^2 \theta$


Average of $\cos^2 \theta$ over all angles is 1/2 \therefore Unpolarised plane polarised plane polarised

Polarisation by reflection

For wave in medium, \mathbf{E} of light causes oscillation // \mathbf{E} . This oscillation can produce (only) transverse waves, hence polarisation of reflected wave.

1



When refracted ray \perp reflected \rightarrow plane polarised reflected wave (Brewster's angle θ_B).

 \rightarrow polaroid sunglasses (see your optics kit)

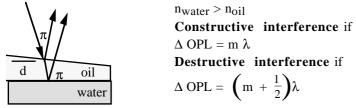
Scattering of light also polarises More effective for short λ , \rightarrow blue sky

Example. What is Brewster's angle for a medium with n = 1.40?

Refraction: $n = \frac{\sin \theta_B}{\sin \theta_r}$

If refracted and reflected are at 90°,

so

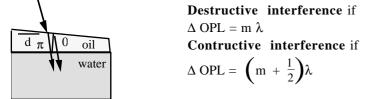

$$\theta_{B} + \theta_{r} = 90^{\circ}$$

$$\sin \theta_{r} = \cos \theta_{B}$$

$$n = \frac{\sin \theta_{B}}{\cos \theta_{B}} = \tan \theta_{B}$$

$$\theta_{B} = \tan^{-1} 1.4 = 54^{\circ}$$

Example. An oil slick (n = 1.20) floats on water. What are the thicknesses for which red light ($\lambda \approx 700$ nm) is reflected weakly? What loes the slick look like at its thinnest point?



) If red has destructive interference,

$$\Delta \text{ OPL} = 2\text{nd} = \left(\text{m} + \frac{1}{2}\right)\lambda_{\text{red}}$$
$$d = \frac{\lambda_{\text{red}}}{2\text{n}}\left(\text{m} + \frac{1}{2}\right)$$
$$m = 0, \quad m = 1, \quad m = 2 \quad \dots$$
$$= 150 \text{ nm}, 440 \text{ nm}, 730 \text{ nm} \quad \text{etc}$$

i) If d << λ, π phase difference on both paths so constructive interference for all λ, so it looks bright and 'white'.

Example. Same problem, but for scuba diver!

