
PHYS1169: Tutorial 11 Solutions 
 

Molecular Solids and Thermal Properties 
 
 

1. In response to a temperature rise of KT 10=∆  the volume V of mercury 
(approximated as ) will increase by an amount 3300mmV = V∆  given by 

TVV ∆=∆ γ  
where  is the thermal coefficient of volume expansion for 
the mercury. This increase in volume must take place in the cylindrical 
capillary of radius , causing the height at which the mercury sits 
in the capillary to change by 

1610182 −−×= Kγ

mmr 05.0=
h∆ , where 

  . hrV ∆=∆ 2π
Thus, 
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(for simplicity, all distances were expressed in millimetres.) 
 

2. Let the original length of the steel piece be  and the original length of the 
aluminium piece be . These two pieces were joined to make the bar of 
original length , so 

Fex

Alx
mmL 100=

Lxx AlFe =+   
When heated by a temperature KT 100=∆  the composite bar increases its 
length by mmL 218.0=∆ . This length increase must be due to the 
combination of the thermal expansions of the steel Fex∆  and of the aluminium 

, so Alx∆
  TxTxxxL AlAlFeFeAlFe ∆+∆=∆+∆=∆ αα  
We now have two simultaneous equations for the two unknowns, and . 
These can be solved using the standard techniques to give, 
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The length of the two pieces is then, 
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Hence, the length of the steel section is 30mm and that of the aluminium 
section is 70mm. 

 
3. The length change in the rod of length L when it is cooled by a temperature 

 is  KT 55=∆



TLL ∆=∆ α  
Young’s Modulus Y is the factor that relates the stress (or pressure) p that is 
applied to the material to the resulting strain, or relative change in dimensions, 
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∆

=  

 The temperature contraction and the sheer expansion are to be the same, so 

   
Y
pLTLL =∆=∆ α  

 The stress that must be applied is 
    MPaMPaYTp 7310120551011 36 =××××=∆= −α
 

4. In the thermal conduction relationship, 
dx
dTkAH = : The 

dt
dQH = , which is 

the rate at which the heat flows through the area A, in that a quantity  

(Joules) of heat energy is conducted in time dt. 

dQ

dx
dT  is the temperature gradient 

that is causing the heat to flow, so that the temperature changes by an amount 
dT in a displacement dx along the path of conduction. The thermal 
conductivity of the medium is the constant k, which is determined by the 
properties of the medium through which the heat is flowing.  

5. The rate of energy (heat)  loss, 
dt
dQH = , may be found using     

dx
dTkAH =  

where the quantities are as defined in question 4. The temperature gradient 
(assumed uniform) is the 5K drop across the 2.5mm of glass, so  
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The rate of energy loss, which is simply the rate at which the heat flows out of 
the window,  

  kW
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Gases and Kinetic Theory 
 

6. Temperature is manifested in matter as the vibrations of its constituent 
molecules and atoms. When the temperature is high, these vibrations are very 
large and significant, and can contain sufficient energy to overcome any 
intermolecular forces that may exist between the molecules. The molecules 
thus have too much thermal energy to bond into relatively fixed locations 
relative to their neighbours, so materials tend to be gaseous at high 
temperatures. At low temperature, however, the thermal vibrations are small 
and weak, so the intermolecular forces can succeed in bonding the molecules 
into a regular arrangement, making a solid material. 

 



7. Newton’s second law of motion, that the force on an object is equal to the 
mass times the acceleration of the object or alternatively that the force is equal 
to the rate of change of momentum of the body, is applied to develop the 
kinetic theory of gases. In the kinetic theory of gases, the gas molecules move 
around randomly with a certain distribution of speeds. The molecules travel in 
a straight line unless they collide with some other object, usually either the 
walls of the container or other gas molecules. The pressure exerted by the gas 
is then interpreted as being due to the change in momentum that the gas 
particles experience when they collide with the walls of the container.  

 
8. The derivation of the equation of state for an ideal gas follows the lecture 

notes. 
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parallel plates, area A. Volume V = AL. 
N molecules (mass m) of an ideal gas. 
Each collision →  
|∆ momentum| = 2mvx 

 
The time between collisions is     t = 2L/vx.  

The average force imparted each collision = 
∆ momentum

∆ time   =  
2mvx
2L/vx

    =  
mvx2

L   

F on all N molecules is: Fall molecules   =   
Nmvx2

___

L     =   PA 

 Net velocity, v2 = vx2 + vy2 + vz2;   

random motion ⇒ vx2
___

  = vy2
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 , so: 
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Which gives     PV =  
N
3  m v2

___
          relating the product of pressure and 

volume for an ideal gas. Boltzmann’s constant, , may be 
introduced as the universal gas constant per molecule, so the gas constant R 
divided by Avogadro’s number : 

1231038.1 −−×= JKk
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But T, temperature defined by:   PV  =  NkT 
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For ideal gas all energy E is kinetic so: 

  E   =   N ε
_
    =   

3
2  NkT      (8) 

T ∝ average K.E. of molecules in an ideal gas. 

3 degrees of motional freedom (x, y, z) 

  i.e. 
1
2  kT per degree of freedom, and we see the importance of Boltzmann’s 

constant in that it relates the average kinetic energy of ideal gas molecules to the 
temperature. 

 

9. Helium is monatomic, so there are just three degrees of freedom 
corresponding to the three translational directions of motion. Each degree of 

freedom will be associated with an average thermal energy of 
1
2  kT, so the 

average kinetic energy of the gas molecules is 
kTmvrms 2

32
2
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 The rms speed of the gas particles is then: 
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10. The molar mass of a molecule represent the mass in kg of one mole of the 

material. From the density given, we can deduce that the mass of 1 litre of the 
chlorine gas is 3.214 grams. If we can determine how many moles of chlorine 
gas make up one litre at standard temperature and pressure (STP), we could 
then calculate the molar mass of chlorine gas, the mass of one mole of 
chlorine gas. STP corresponds to a temperature KT 273=  and a pressure of 1 
atm, or . Assuming chlorine may be approximated as an 
ideal gas, we can determine the number of moles in one litre  
using the ideal gas equation of state, 

PaP 510013.1 ×=
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 The weight of one mole would then be 



   gm 0.72
0446.0
214.3

1 ==  

 Therefore,  the molar mass of chlorine gas is ( ) 10.72 −molg . 
 

Extra Problems 
 
      E1. The molar weight of quartz ( ) is 60.1g/mol. Thus, 10 kg of quartz  2SiO

corresponds to  

   mol
molg

kgn 166
/1.60

10
==    

moles of quartz.  
The amount of heat energy, dQ, required to raise the temperature of n moles of 
material by dT is given by 
     ncdTdQ =
where c is the molar specific heat capacity of the material. The total heat 
energy required to raise the temperature of the material from 348K to 418K is 

   ∫
=

=
418

348T

dTcnQ

using the supplied relationship for the molar heat capacity of quartz, valid for 
this temperature range, 
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      E2. The thermal conductivity can be described by 

   
dx
dTkA

dt
dQ

=  

 with the quantities as defined in earlier problems. 
In the steady state, the rate of heat flow must be the power generated in the 
resistor,  

   RI
dt
dQ 2=  

and this must be transported through every spherical shell at arbitrary radius r. 
The surface area of the shell at radius r is simply , so the temperature 
gradient as a function of radius must satisfy 

24 rA π=

  
dr
dTkrRI 22 4π=  

and so the temperature gradient cannot be constant (in fact, 2
1
rdr

dT
∝  to 

ensure the radial dependencies match on both sides). 



We can integrate out the temperature gradient in the above formula, by 
integrating from the inner sphere (with 1rr =  and 1TT = ) and the outer sphere 
(with  and ), 2rr = 2TT =
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and so the thermal conductivity can be found as 
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(adjusting the sign so that the thermal conductivity is positive, while the 
temperature gradient is negative (as it decreases with increasing radius). 

 
      E3. Starting with the ideal gas equation of state, 
    nRTPV =
 and making the volume the subject 
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 Differentiating with respect to temperature, treating the pressure as a constant 
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 and the volume coefficient of thermal expansion is 
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using the equation of state once more. Therefore, at the temperature of 
 the isobaric volume coefficient of thermal expansion has the 

numerical value of  
KT 15.273=

  13106610.3
15.273

1 −−×== Kκ . 

 
      E4. The work done by a material as it changes its volume by dV against a pressure  

P is 
    dVPdW =
 If the pressure is constant, then the work done in expanding from  to  is 1V 2V
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 Now, for an ideal gas, using the equation of state the work becomes 

   dV
V

nRTdW =  

 Expanding isothermally (T is a constant) from  to , the work done is 1V 2V
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      E5. The average translational kinetic energy of each particle of an ideal gas is 
   kT2

3=ε  
One mole of the gas consist of  particles, so the total translational kinetic 
energy of the ideal gas is  
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At the temperature of 300K this is 
  kJKE 74.3300315.82

3 =××=  
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